首页> 外文OA文献 >Optimal Brain Surgeon and general network pruning
【2h】

Optimal Brain Surgeon and general network pruning

机译:最佳脑外科医师和一般网络修剪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The use of information from all second-order derivatives of the error function to perform network pruning (i.e., removing unimportant weights from a trained network) in order to improve generalization, simplify networks, reduce hardware or storage requirements, increase the\udspeed of further training, and, in some cases, enable rule extraction, is investigated. The method, Optimal Brain Surgeon (OBS), is significantly better than magnitude-based methods and Optimal Brain Damage, which often remove the wrong weights. OBS, permits pruning of\udmore weights than other methods (for the same error on the training set), and thus yields better generalization on test data. Crucial to OBS is a recursion relation for calculating the inverse Hessian matrix\udH^-1 from training data and structural information of the set. OBS permits a 76%, a 62%, and a 90% reduction in weights over backpropagation with weight decay on\udthree benchmark MONK'S problems. Of OBS, Optimal Brain Damage, and a magnitude-based method, only OBS deletes the correct weights from a trained XOR network in every case.\udFinally, whereas Sejnowski and Rosenberg used 18,000 \udweights in their NETtalk network, we used OBS to prune\uda network to just 1,560 weights, yielding better generalization.
机译:使用来自误差函数的所有二阶导数的信息来执行网络修剪(即,从经过训练的网络中删除不重要的权重),以提高通用性,简化网络,降低硬件或存储要求,进一步提高速度培训,并在某些情况下启用规则提取,已经过调查。最佳脑外科医生(OBS)方法明显优于基于幅度的方法和最佳脑损伤法,后者常常消除错误的重量。与其他方法相比,OBS允许对权重进行修剪(对于训练集上的相同错误),因此可以更好地概括测试数据。对OBS至关重要的是一种递归关系,用于根据训练数据和集合的结构信息来计算逆Hessian矩阵\ udH ^ -1。与反向传播相比,OBS可以使重量减少76%,62%和90%,并且在三个基准MONK问题上都有重量衰减。在OBS,最佳脑损伤和基于幅度的方法中,只有OBS在每种情况下都会从经过训练的XOR网络中删除正确的权重。\ ud最后,而Sejnowski和Rosenberg在他们的NETtalk网络中使用了18,000 \ udweight,我们使用OBS进行修剪\ uda网络仅需1,560权重,因此泛化效果更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号